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Fig. 6.

Fig. 5. Low-noise 4-GHz down-converter.
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TABLE II

SUMMARY OF MEASURED PERFORMANCE OF RADIO-LINK MIXERS

RF input-signal tuning

range 3.6–4.2 GHz 7.1–7.7 GHz 12.7–13.3GHz

Overall noise figure at

ambient temperature

(including losses of 3.2 dB min 3.7 dB min 5 dB min

image reject filter) 3.5 dB max 4 dB max 5.3dBmax
IF noise figure 1.5dB 1.5dB 1.5dB

Conversion 10ss 2 dB max 2.6dBmax 4 dB max
Intermediate frequency 70 MHz

Overall down-conversion

gain of the receiver 24 dB
Frequency response over flat ~0. 05 dB at ambient temperature

any 25-MHz band +0.2 dB from – 5“C–55°C
*O. 2 dB with + 2-d B pump power

variation
Diodes employed HP 5082–2709 HP 5082–2709 AEI DC 1306
Rectified current 1 mA 1 mA 2 mA
AM/PM conversion O. 2“/d B at an input RF level of – 20 dBm

IV, EXPERIMENTAL RESULTS

Down-converters in the configuration described in Section 11 I have

been realized in the whole frequency range from 4 to 13 GHz. The

measured performance of three down-converter versions, designed
for microwave radio-link equipment, operating in the frequency

ranges of 3.6–4.2 GHz, 7.1–7.7 GHz, and 12.7–13.3 GHz, respectively,

are summarized in Table II.
The RF tunable range, indicated iu Table II, is covered by

mechanically retuning the image rejection filter only. No tuning is

needed for both the second-harmonic and third-harmonic idle-

frequency filters. It has been found experimentally that the position

of the image rejection filter is not critical. Only two electrical dis-

tances (i.e., only one spacer) are sufficient to cover the entire RF
input-signal tuning range.

Typical behavior of the noise figure of a down-converter unit

within the RF frequeucy range is shown in Fig. 6. In addition to the
results given in Table II, a typical example of an instantaneous gain-

frequency response is shown in Fig. 7; such a response is practically

Jhe-same in the whole RF freque~cy range.
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Matching Considerations of Lossless Reciprocal 5-Port

Waveguide Junctions

.’%. L. HIEBER AND R. J. VERNON

Absfracf—Some of the restrictions imposed on general 5-port

junctions (or networks) by losslessness and reciprocity are discussed
as well as considerations of restrictions due to physical symmetry.

It is proven that if a lossless reciprocal 5-port junction (or network)

is completely matched, then all off-diagonal elements of the scatter-

ing matrix are nonzero; i.e., if the junction is matched, no port is

decoupled from any of the others. It is also shown that all off-diagonal

scattering coefficients of a lossless reciprocal 5-port junction (or

network) have a magnitude of one half if and only if the junction
is completely matched. Those physical symmetries which preclude
complete matching of 5-port junctions are given and a general
theorem concerning the matching of junctions and physical symmetry
is proven.

1. INTRODUCTION

It has long been established that Iossless reciprocal waveguide

j unctionsl having three or four electrical ports exhibit certain prop-

erties pertaining to complete matching and port decoupling, which

may be determined from the fact that the scattering matrix of such
a junction must be both unitary and symmetric [1 ], [6 ]. In addition

ihe junction is specified
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for a waveguide junction possessing physical symmetry, group

theory and matrix algebra may be employed to further determine

thecharacteristics restiltlng from this symmetry [1]–[5]. The litera-

ture has considered indetaii the general properties of losslessrecip-

rocal 3- and 4-port junctions as well as many specific examples of

each of these classes. Many specific junctions having five or more
ports have also been discussed [1], [7]–[14] but general considera-

tions of junctions having five or more ports have been virtually
ignored. Such general considerations are often of great value in de-

sign procedures as has proven to be the case for 3- and A-port junc-

tions.
This short paper considers some restrictions imposed on general

5-port junctions by losslessness and reciprocity, and later some re-
strictions imposed by physical symmetry. It will be shown as follows

that lossless reciprocal 5-port junctions cannot be completely
matched if they have two or more ports decoupled from one another

or if they have certain common forms of physical symmetry. Al-

though these properties diminish the practical importance of 5-port

junctions, the results themselves are none the iess important since

they specify quite general characteristics which cannot be physically

achieved with the kind of structure being considered. It is also

proven that for any Iossless reciprocal 5-port junction which is com-
pletely matched, the off-diagonal elements of the scattering matrix

all have a magnitude of one half, and relations between the phases

of these elements are presented.

11. GENERAL 5-PORT JUNCTIONS2

Consider a lossless reciprocal 5-port waveguide j unction3 (or

network) which initially will also be assumed completely matched.

Denote this junction by Y and its scattering matrix by [.S ]. For a

reciprocal junction, [S’ ] is symmetric so that .SiJ = .SJi. Also, since

the junction has been assumed to be completely matched, .Sii = O,

i= l,..., S. Employing these restrictions, the scattering matrix

for I is given by

[1
SIZ 5’18 S14 S]:

SI, o S23 sz& s2i

[s] = S*3 s,, o s,, s,, . (1)

S14 S24 S34 o S45

SN, sn S35 S45 o

Furthermore, since ~ is Iossless, [S] is unitary and the columns of

[S] form an orthonormal set under a Hermitian inner product, that
is, cit Cj = d,i where c; is the ith column of [S] written in column

vector form, and c~t = (c~*)~, where * denotes complex conjugation
and T indicates the transpose operation. Applying this restriction to

the columns of [S] results in the following equations:

cl@I=l= 1s1212+ 1s1312+ 1s1412+ ]SIS\2 (2)

c2fcZ=l= ISIZ12+ 1S2312+ IS2412+ lS2s\2 (3)

c3tc3=l= 1s13 [2+ l&[2+ 1s34]2+

c4tc4=l= ]&4\2+ l&4\2+ 1s3412+

C,tc, =l= \.s,51’+ Is,,]’+ 1s35[’+

Cltci = O = s13*s23 + s14*s24 + s15*s2S

c1tc8 = O = s12*~23 + s14*s34 + s15*s3:

ClfC4 = O = sM*s24 + s13*s34 + s16*s4;

clfc~ = O = SM*SM + s13*s35 + s14*s4;

CZTC3 = O = SIZ*SU + s24*s34 + ~25*s3S

c2tc4 = O = s12*s14 + s23*s34 + s2i*s46

C2tC~ = O = SIZ*SM + ~23*s35 + s24*s43

c3tc4 = O = ~18*s14 + s23*~24 + sa5*s43

c3tc5 = O = s13*~15 + s’23*s25 + .!734*s45

c4tc5 = o = S14*S15 + S24*S25 + SU*S33.

s,, p (4)

S4, I 2 (5)

s,, 1’ (6)

(7)

(8)

(9)

(lo)

(11)

(12)

(13)

(14)

(15)

(16)

These equations will be used in the proof of Theorems 1 and 2 which
follow.

2 The term “general” is used here to indicate that the 5-port j unctions considered
in this section,need not have any particular physical symmetry.

~ All junctrons (or networks) wdl also be considered hnear and passive.

Theorem 1

For a lossless reciprocal 5-port waveguide junction (or network),

being completely matched and having two or more ports decoupled

from one another are mutually exclusive conditions.

Proof: Since at least one lossless reciprocal 5-port junction can be

completely matched (Dicke’s star j unction4), a proof by contradic-
tion may be used by assuming that a lossless reciprocal 5-port j unc-

tion -T is completely matched and has at least two decoupled ports,
Assuming both of these conditions simultaneously leads to a mathe-

matical contradiction as is shown as follows.
Since it has been hypothesized that at least two ports of ~ are

decoupled, let the ports be numbered so that at least ports 4 and 5
are decoupled. Then S45= O.

Next it wiil be shown that S.23cannot equal zero if SM = O for the
restrictions already placed on [S]. Assume that .&= O. Then, (12)–

(15) and S,5=0 imply that: 1) SI~=S,i =0, or 2) Sii =S,, =0, or 3)

at least three of the fOUr scattering coefficients S12, s13, s14! and Sl~ are

zero.
1) Setting S,, = S,3 =.& = S45 = O, in (2)-(6) and adding (5) and

(6) yi$lds

2=(1.$,4/2+ 1s1,12)+(1s241’+ /s2512)+(1s3412+ 1S35/’). (17)

Now substituting (2)–(4) into (17) produces the obvious contradic-

tion 2 =3. Thus, .& and ~13 cannot both be zero if & = O.

2) Duplicating the procedure in 1) for .S14 =SIE = S23 = S45 = O re-

sults in the same contradiction; hence, &4 and S15 cannot both be

zero if S2J = O.

3) If at least three of the four coefficients SrZ, SI;, S14, and S15 are

zero, then at least S12 =S13 = O or S14 = S15 = O. But neither of these

conditions can occur according to the developments under 1) and
2) if both S,5 = O and & =0.

Therefore, .& #O.

Noting that S15 has been assumed to be zero and that S,3 #O,

(12)-(15) may be solved for -%, SW SW and S2s, respectively. The
expressions for SM and s24 may be substituted into (9) giving

O = s12*s13*s14 (18)

and the expressions for S3S and .% may be substituted into (10)
yielding

O = s,,*s,3*s15. (19)

Equations (18) and (19) have only the following possible solutions:
1) S,, =0, 2) S13=0, 3) S,, =S,5 =0, or 4) any combination of 1), 2),

and 3).
1) If SIj =0, then since SIS = O, (12) and (13) indicate that SW

= SXi =0 also. Making these substitutions in (2)–(6) and adding
(2) and (3) yields

2=(1 S1, ]2+ 1s,312)+(/s1412+ 1s2412)+(1s1512+ 1s25]2). (20)

Substituting (4)–(6) into (20) yields the result 2 =3, contradicting
the hypothesis that S,2 = O. Therefore, S,* # O.

2) Duplication of the procedure in 1) for Sl~ =0 contradicts the

hypothesis that S,S = O is an acceptable solution to (18) and (19).
Hence, S13#O.

3) If S,~=SM=O, then .% =S,b=SU =S,5=0 also, from (12)-
(15). When these six scattering coefficients vanish, (5) reduces to the

contradiction, 1 = O. Thus, S,4 and SM cannot both be zero.

4) Any combination of the conditions of 1), 2), and 3) may simi-
larly be shown to lead to contradictory results.

Therefore, S4S#O for a completely matched .T.
In this proof the two ports assumed to be decoupled were arbi-

trarily y numbered 4 and 5. However, port numbering can in no way
influence the actual physical characteristics of a junction. Thus the
same contradictory results would have been obtained if any pair of
numbers had been assigned to the ports assumed to be decoupled.
Also, in the above development all off-diagonal elements other than
S*S were taken to be completely arbitrary unless it was proven that

they must be nonzero. Thus the above development shows that it is

not possible to have any combination of decoupled ports in a matched

4 It will be shown later that other possible symmetries also allow complete
matching.
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Iossless reciprocal 5-port junction, and the proof of Theorem 1

complete.

Theorem 2

All off-diagonal scattering coefficients of a lossless reciprocal

is

5-
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TABLE I

SCATTERING COEFFICIENT PHASE RELATIONSHIPS FOR A LOSSLESS

RECIPROCAL COMPLETELY MATCHED 5-PORT JUNCTION

$24 = -413 + $14 + $23 + z~(nl i 1/3)
. . . . . .

port junction (network) have a magnitude of one half if and only ,,

the junction is completely matched.
P-roof: Let ~ denote ‘a lossless reciprocal 5-port network. The

sufficient or “if” condition is proven first.

Since ~ is totally matched, then the scattering matrix is given by

(1), and (2)-(16) apply. Also, by Theorem 1, .S~j#O, i #j. Substitut-
ing the expression for 5’81 obtained from (9) into (8) yields

‘S1’2*S18*SZ8 + S12*L’$14*SZ4+ S14”S15”S45
s?: = —————— (21)

S1$*S15*

Substituting this expression for .S.35into (10) yields

S12*(.$1,*S2, – S14*S,4 – S15’S25)
S45 = ——

2S14*S,S*
(22)

Substituting this expression for 315 back into (21) gives

s12*(–s13*s23 + s14*s24 – SM*SZJ
S3, = —————

zs13*s15*
(23)

Substituting the expression for .S45 obtained from (22) into (9) gives

S12*(–S13*SZ3 – S14*S94 + S15*SZ6)
s,, = —

2.$Iz*S14*
(24)

Using (7), (22)–(24) become, respectively

s12*s13* s12*s14*
S45 = ——

s12*s15*

s23, s35 = ~~1~ s24, S34 = ~~1~ SM. (25)
S14*S16*

Replacing (8)–(10) with (1 1)–(13), respectively, in the above

procedure, and using the complex conjugate of (7), then the follow-
ing relationships, analogous to (25), result:

In terms of scattering coefficient magnitudes, (25) and (26) reduce to

the following:

IS,*I= Is,ml, m=3,4j5. (27)

But (27) must be valid independent of the port numbering of ~,

therefore, it must apply to the scattering coefficients relating any
two ports of Y to the remaining ports, i.e.

l.Sm I= Isttr, ], /w#k, t, k,z, w=l, . . ..s. (28)

Substituting (28) into (2)-(6) and remembering that IS;, I

=lS,i\, i,j=l, . . .,5, then

lS,,j=~, i#j, i,j=l,...,5 (29)

and the sufficient or “if” condition is proved.

Now, consider the necessary or “only if” condition. If all off-
diagonal scattering coefficients of J have a magnitude of one half,

i.e., ]S,, [ =~,i#j, i,j=l, . ...5, then since [S] is unitary

5

C/tcl=l =xlskllz=l+lslt /2 (30)
k=l

and

o = Su, 1= 1,...,5. (31)

Equation (31) is synonymous to the specification that ~ is completely

matched; hence, the necessary condition is proven.
Theorem 2 specifies all scattering coefficient magnitudes for a loss-

Iess reciprocal completely matched 5-port junction. If (7)-(16), or
equivalently (14)–(16), (25), and (26) are solved in terms of the
scattering coefficient phases, five equations in ten unknowns result.
This exhibits the extent to which these phases may be specified for a
matched reciprocal lossless 5-port junction. The results are listed in
Table I for independently chosen ~,,, +13, 4,4, +,5, and +,,, where

S,k = ISM I exp (j+,k). Of course, if the junction under consideration

434 = -$12 + +~~ + 623 + Z.(.3 * 1/3)

+35 = -+12 + 415 + 423 + 2.(nU * 1/3)

$Q5 = -$12 - $,3 + +Ih + 41S + 423 + 2T.5

Note: Phase rel?tlonships are for independently chosen,+~s, .#m @~, @~, and ,423.
Here S,l, =+ exp (fqi,k), c #k and n~, k=l, . . . , 5, H an integer. The upper signs
gwe one acceptable set of phase relations and the lower signs give another.

possesses physical symmetry, more information than is given in the
table may be attainable as shown by Dicke for the case of the 5-port

star junction [1 ].

III. SYMMETRICAL 5-PORT WAVEGUIDE JUNCTIONS

In this section 5-port waveguide junctions possessing some form
of physical symmetry are considered, An object possesses physical

symmetry if one or more operations such as reflection in a plane, or

rotation (other than by 360°) about an axis superimpose the object

back into itself [1]. These operations which leave the object un-

changed are called covering or symmetry operations, The set of all
such operations for a physical object, together with the identity

operation, form a group in the mathematical sense [15 ]. If a covering

operation of a waveguide junction is performed just on the fields
within the junction, keeping the same junction position and port
numbering, the new field pattern will also satisfy the boundary con-
ditions within the junction, but the fields at the various ports will in

general be redistributed. The matrix which describes this redistribu-
tion of the port electric fields by a covering operation is termed the

port electric-field transformation for that operation. The port electric-
field transformations for any given junction also form a group which

is isomorphic with the group of covering operations for that j unction.

These port-field transformations must commute with the scattering

matrix so that [1 ]

[x] [s] = [s] [x] (32)

where [X] denotes the port-field transformation associated with a
covering operation X.

If G= ([X,],. . . , [X~ ] } is a group of port-field transformations
of a j unction .l and if every covering operation of ~ has a correspond-
ing port-field transformation which is an element of G, then G is
said to completely represent the symmetry exhibited by ~. Further-

more, if for all [X] in G, the restrictions imposed by (32) on the

scattering coefficients do not preclude the possibility y that S,, = O,
i= l,.. . , tz, then it is said that the symmetry of -T does not preclude
Y from being completely matched. Similarly, if for all [X] in G, (32)

does require that S[i #O for one or more values of i, then it is said

that the junction’s symmetry precludes its being completely matched.
Note that if symmetry does not preclude complete matching, there

is still no guarantee that J can necessarily be matched. For example,

copper plates located at the terminal planes of all the ports of I will
preserve the symmetry of Y and yet leave the junction so that it

cannot be matched.

Theorevn 3

Let J, and Jz be two Iossless reciprocal n-port junctions, and let

G and H be groups of port-fieId transformations, completely repre-
senting the symmetry of JI and Jz, respectively. If symmetry does

not preclude totally matching JI and if H is a subgroup of G, then
symmetry does not preclude totally matching J?.

Proof: Since His a subgroup of G, then all port-field transfer ma-

tions of H are contained in G. Thus the restrictions placed on the
scattering coefficients of Jz by H and (32) are satisfied if the restric-
tions placed on the scattering coefficients of ~1 by G and (32) are
satisfied. But, symmetry does not preclude totally matching J1;

thus the scattering coefficient restrictions may be satisfied for a

completely matched II and also for a totally matched JZ Therefore,
symmetry does not preclude completely matching Jt as Was to be

shown.
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TABLE II

MATCHING PROPERTIES OF LOSSLESS RECIPROCAL 5-PORT JUNCTIONS

COMPOSED OF R.ECTANGULAR, CIRCULAR, AND/OR COAXIAL WAVE-

GUIDES AND POSSESSING VARIOUS FORMS OF PHYSICAL SYMMETRY

Junction Symnetr~ ExaQIp1e Precludes C.rnPlete Matchin&

Fifth-order rotation,!l* Fig. 1 No

Fourth-order rotational* zig. 2 Yes

Third-order rotation,31* Fis. 3 Yes

Second-order rotational
Type 2 Fig. 4 No
Type 1 Fig. 5 Yss
Type O** .-

First-order rotational’ No

Reflection
Type 2 Fig. 4 Xo
Type 1 Fig. 6 Yes
Type O Fig. 7 k+?

* The results are valid for a junction composed of arbitrary waveguides.

** This synunetry is unrealizable in the five-port case.

+ First-order rotational sym,etv, generated by the identity operation, never
precludes matching any junction.

?+ This result is valid if and only if the representative port-field trans-
formation is * [15].

The converse of Theorem 3 does not hold i n general. If G represents
symmetry that precludes matching YI and if H= {[1.1},5where~
denotes the identity operation and [In] denotes the flXn identity
matrix which is the port-field transformation forl, then His a sub-

group of G. But (32) is always satisfied for [x]= [in]. Therefore,

symmetry does not preclude matching ~z. This situation is a counter-

example of the converse of Theorem 3, and the converse is invalid.

Other less trivial counterexamples also exist.

Theorem 3 is quite useful in conjunction with a symmetry class
analysis of Iossless reciprocal n-port junctions, i.e., a determination
of the types of physical symmetry that preclude complete matching
and those which do not. This evaluation is most easily performed by’
considering cyclic groups of symmetry operations and their asso-
ciated port-field transformations. Since these groups are generated by
one group element, then all scattering coefficient restrictions im-

posed by a cyclic group may be ascertained by commuting only this
group element with the scattering matrix in accordance with (32).

If it can be shown that such a cyclic group precludes complete

matching, e.g., the scattering coefficient restrictions imposed by

(32) arenotconsistent with the relationships of Table I forthe5-

port case, then anygroup containing this cyclic group will also pre-
clude matching by Theorem 3. Since every mathematical group may

be subdivided into cyclic subgroups, then any group of port-field

transformations which precludes total matching maybe determined
from the cyclic groups which preclude complete matching, providing

all possible cyclic groups are considered.
Such a symmetry class analysis of lossless reciprocal 5-port wave-

guide junctions has been performed [16]. While the analysis itself
is too lengthy to include here, the results are given in Theorems 4 and

5, and Table II. For purposes of conveniently classifying symmetry

operations, the followingd efinitionsa reintroduced.

Definition 1

If a waveguide junction lhas a rotational symmetry operation
about an axis A by 2rm/n rad, where m and n are relatively prime
integers, then there exist n—l distinct additional rotations about A
[15 ], and -7 is said to have nth-order rotational symmetry. The axis
A is said to be an n-fold axis.

Note that a 5-port junctioncau have at most five distinct rota-
tions about one axis, hence it can have rotational symmetry of at
most theiifth order about one axis.

Definition 2

If an n-port waveguide junction J has a reflection operation
about one pIane P or a second-order rotation operation about one

5 Since H completely represents the symmetry of J,, then this is equivalent to
specifying that J, has no symmetry. Consequently, symmetry does not preclude
matching Jz.

(1)

Ii-1

Fig. 1. Typical 5-port junction possessing fifth-order
rotational symmetry about an axis A.

(1)

Fig. 2. Typical 5-port junction possessing fourth-order
rotational symmetry about an axis A.

\A

Fig.3. Typical S-port junction possessing third-order
rotational symmetry about an axis A.

axis A and if the corresponding port-field transformation spatially
affects the fieldsGin 2k of the junctions ports, 2k<n, then -T is said to

have reflection symmetry or second-order rotational symmetry, re-
spectively, of type k.

Note that a 5-port junction can have at most four ports whose
fields are spatially affected by a reflection or second-order rotation.

Thus it can have reflection or second-order rotational symmetry of at

most type 2. Figs. 1–7 illustrate the notation and terminology in-

troduced in these definitions.

With this terminology in mind, the following theoremson 5-port
junctions are introduced.

6 If only the sense of the fields is affected by a port-field transformation, then
the fields are not considered to be spatiallyaffected.
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Fig. 4. Typica2 5-port junctions possessing type 2 second-order rotational sym-
metry about an axis A and type 2 reflection symmetry about each of the planes
Pa and Pb.

(1)

A

(4)

I

(5)

A

(4)

, /-P

,

\ I

(i)

(4)

4

(5) * p

(1) ‘\. (2)

\.

(3)

Fig. 6. Typical 5-port junctions possessing type 1
reflection symmetry about a plane P.

(2)

(5)

Fig. 7. Typical 5-port junction powessingtype O
reflection symmetry about a plane P.

Fig. 5. Typical 5-port junction mssessin!g type 1
second-order rotational symmetry about an axis A.

Theorem 4

If a Iossless reciprocal 5-port junction J has a group of port-field

transformations G, completely representing the syrnmetryof J, and
if G has a subgroup 11 which represents either: 1) a third-order rota-

tional class of symmetry operations, or 2) a fourth-order rotational

class of symmetry operations, then G precludes completely match-
ing J.

Theoretn 5

If a lossless reciprocal 5-port junction J composed of rectangular,

circular, and/or coaxial waveguides has a group of port-field trans-
formations G, completely representing the symmetry of J, and if G
hasasubgroup ZZwhich represents either: 1) a type 1 second-order
rotational class of symmetry operations, or 2) a type 1 reflection

class of symmetry operations, then G precludes completely match-

ing J.
The matching properties of allcyclic symmetry groups thata 5-

port canhave aresummarized in Table II. Finally, thetheoremfol-
Iowing gives further information concerning junctions having a re-
flection symmetry plane which cuts two or more ports such that the

electric field of one is odd and the electric field of another is even,
relative to that plane.

Theorem 6

If alossless reciprocal 5-port waveguide junction hasa plane of
reflection symmetry P which cuts two or more electrical ports so that

the electric field of one is even and that of another is odd with respect

to P, then the junction may not be,matched (and still retain there-
flection symmetry).

Proof: By the “port decoupling theorem” [5], if the fields of two

ports of a reciprocal junction have opposite symmetry (olle even and

one odd) with respect to a plane of reflection symmetry of the
junction, they aredecoupled. Then, by Theorem l,since the junction

being considered has five electrical ports, it cannot be matched and
the theorem is proven.
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Faster Impedance Estimation for Coupled Microstrips

with an Overrelaxation Method

R. DAUMAS, D. POMPEI, E. RIVIER, AND A. ROS

Absfracf—Using the Frankel–Young method [1], [2], fast es-
timation of the potential distribution f or a microstrip structure is ob-
tained when an accelerating factor ~ is introduced in the finite-

differences (relaxation) method. It is possible to calculate such a

factor by an iterative technique, but the time of computation needed

to find w annihilates the theoretical gain.

In this short paper, the authors present a method which gives an

analytical expression for ~. The realistic case examined here, as an
illustration, is that of the suspended microstrip couplers for which

odd and even impedances are the interesting parameters.

Given an analytical expression for CO,the overrelaxation method

aPpears as a very powerful and attractive method for finding the
solution of any type of microstrip structure.

1. INTRODUCTION

The integrated technology using microstrips provides new pos-
sibilities for microwave designs. A very important one is the realiza-

tion of compact low-cost dispersive lines used as group-velocity cor-
rectors for digital telecommunications. The basic component of such

a system can be reduced to a microstrip coupler.
In the last few years, several authors [3 ]– [7 ] have treated some

particular problems using different methods, but they are generally

complicated and applicable to particular geometrical cases.

A solution using finite differences has been proposed by Green [8]

and others. An’ application has been given by Brenner [9] to the
simple case of the suspended microstrip line and by Gupta [10] to

the idealized problem considered by Cohn [3], i.e., the suspended
coupler in a homogeneous dielectric such as air. That problem is

purely theoretical, with no substrate sustaining the strips.

However, as emphasized by Smith [6], the methods using finite

differences appear as inadequate because the very fine mesh required
for the accuracy leads to difficulties in the convergence. Clearly, it

means that the computing time becomes prohibitive and the com-

puter memory becomes saturated.

Nevertheless, the use of the finite-differences method should
become a very fruitful approach if an accelerating factor taking into

account the geometry of the problem could be Injected in the pro-
gram.

In this short paper, the problem of the research of such a factor
is solved and applied to the case of the suspended coupler with a

dielectric substrate of constant e. sustaining the strips.
In the finite-differences method, we define in a geometrical domain

the potentials at the nodes of a net (Fig. 1). The relations between
all the potentials can be written

(’4)(W) = (B). (1)

System (1) can be solved by an iterative process [1], [2], [11]

wri+ting

*,+, = M*L + c. (2)

The Fran.kel–~oung method introduces the accelerating factor ~.
An optimal value of co—uOPL gives the fastest convergence. We have

.
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Fig. 1. Geometrical parameters definition.

kilf = sup 1 – ;: (4)

where M are the eigenvalues and ak~ are the diagonal elements of A.

II. APPLICATIONS OF THE FRANKEL–YOUNG METHOD

TO A SUSPENDED M ICROSTRIP COUPLER

A. Resolution of the P~oblern for an “Empty Box” [11]

Using the finite-differences method and for the second-order

approximation, the Laplace’s equation is reduced to

S7(1, J)=+[v(I, J–l)+w(I,.7+l)+w(I- 1,-7) +v?(I+l,.7)]. (5)

The variable changing ~(1, -T) =X%, with i = (N–2)(1–2) +1–1,

allows us to have the unknowns indexed by a continuous sequence

(Fig. 1).
The ith equation of the system (1) will be written

4X, –X,_I– X,+l– X,~N_Z– X;.NhZ=0, l<i<(M–2)(N–2).

The matrix AI (Fig. 2) can always be split into two symmetrical tri-
diagonals—matrices AI and A z, the main diagonal elerneuts being

LUk/z such that A =AI +-42.

Itcan be shown that A, and Az have the same eigenvectors. Let

V be one of these eigenvectors and ~, and p, be the two correspond-
ing eigenvalues for Al and A~; thus we have

Av = (M+ J42)V.

Consequently, the eigenvalue of A corresponding to V is

P= P1+P2.

The matrix A, has (M–2) tridiagonal blocks of order (AT-2),

where all are identical; let A 1’ be such a block. The eigenvalues pl of
A, are (M– 2) times the eigenvalues of Al’:

y –1

–1 2 –1

. .

A{ = . . .

. . .

–1 2 –1

–1 2

The eigenvalues of the matrix A,’ are

N–2

kII
~,k’ = 2 — 2 CQS——— , l<k<N–2.

N–1

In the matrix Aj, by permutations of rows and columns, it is

possible to reduce AZ to a band matrix X, like Al.

In order to avoid the tedious calculations by permutations, it is

possible to find a faster process to transform A z into ~z. One chooses
another variable changing ~(1, ~) =X,*, with i = (M— 2 ) (J—2)
+1–1.

The system (1) is then written (A )*(X)*= (1?)*. The physical

problem is unchanged, so that the solution is the same. The solution
vector (X) * is simply written on a new set of coordinate vectors.
A and A * represent the same linear application; consequent y, they
are similar and therefore have the same eigenvalues.

This time, A* can be split into two matrices AI* and A,*, where

Al” originates from the vertical lines and .42* from the horizontal
lines and A*= AI*+A2*.

A,* has (N– 2) diagonal blocks .4,’” similar to Al’) but of order
M–2.


