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Fig. 5. Low-noise 4-GHz down-converter,
‘5
7}
o
m 4 o
o
a
z 3
&
5 2
o
i
3 1
o
z
0
7 7 722 73 74 15 76 17

FREQUENCY IN GHz

Fig. 6. Measured noise figure response of representative down-converter.
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Fig, 7. Representative down-converter instantaneous

overall gain-frequency response.

TABLE II

SUMMARY OF MEASURED PERFORMANCE OF RADIO-LINK MIXERS

RF input-signal tuning
range

Overall noise figure at
ambient temperature

3.6-4.2 GHz 7.1-7.7 GHz 12.7-13.3GHz

(including losses of 3.2 dB min 3.7 dB min 5 dB min

image reject filter) 3.5 dB max 4 dB max 5.3 dB max
IF noise figure 1.5dB 1.5dB 1.5dB
Conversion loss 2 dB max 2.6 dB max 4 dB max
Intermediate frequency 70 MHz
Overall down-conversion

gain of the receiver 24 dB

flat £0.05 dB at ambient temperature
4+0.2 dB from —35°C-55°C
+0.2 dB with +2-dB pump power

Frequency response over
any 25-MHz band

variation
Diodes employed HP 5082-2709 HP 5082-2709 AEI DC 1306
Rectified current 1 mA 1 mA 2 mA

AM/PM conversion 0.2°/dB at an input RF level of —20 dBm
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IV. EXPERIMENTAL RESULTS

Down-converters in the configuration described in Section 111 have
been realized in the whole frequency range from 4 to 13 GHz. The
measured performance of three down-converter versions, designed
for microwave radio-link equipment, operating in the frequency
ranges of 3.6-4.2 GHz, 7.1-7.7 GHz, and 12.7-13.3 GHz, respectively,
are summarized in Table IT.

The RF tunable range, indicated in Table. I, is covered by
mechanically retuning the image rejection filter only. No tuning is
needed for both the second-harmonic and third-harmonic idle-
frequency filters. It has been found experimentally that the position
of the image rejection filter is not critical. Only two electrical dis-
tances (i.e., only one spacer) are sufficient to cover the entire RF

‘input-signal tuning range.

Typical behavior of the noise figure of a down-converter unit
within the RF frequency range is shown in Fig. 6. In addition to the
results given in Table 11, a typical example of an instantaneous gain-
frequency respotise is shown in Fig. 7; such a response is practically
the same in the whole RF frequency range.
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Matching Considerations of Lossless Reciprocal 5-Port
Waveguide Junctions

A. L. HIEBER anp R. J. VERNON

Abstract—Some of the restrictions imposed on general 5-port
junctions (or networks) by losslessness and reciprocity are discussed
as well as considerations of restrictions due to physical symmetry.
It is proven that if a lossless reciprocal 5-port junction (or network)
is completely matched, then all off-diagonal elements of the scatter-
ing matrix are nonzero; i.e., if the junction is matched, no port is
decoupled from any of the others. It is also shown that all off-diagonal
scattering coefficients of a lossless reciprocal 5-port junction (or
network) have a magnitude of one half if and only if the junction
is completely matched. Those physical symmetries which preclude
complete matching of 5-port junctions are given and a general
theorem concerning the matching of junctions and physical symmetry
is proven.

I. INTRODUCTION

It has long been established that lossless reciprocal waveguide
junctions! having three or four electrical ports exhibit certain prop-
erties pertaining to complete matching and port decoupling, which
may be determined from the fact that the scattering matrix of such
a junction must be both unitary and symmetric [1], [6]. In addition
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1 The more general term “network” may be used throughout this short paper in
place of the terms “waveguide junction” except where the physical symmetry of
the junction is specified.
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for a waveguide junction possessing physical symmetry, group
theory and matrix algebra may be employed to further determine
the characteristics resulting from this symmetry [1]-[5]. The litera-
ture has considered in detail the general properties of lossless recip-
rocal 3- and 4-port junctions as well as many specific examples of
each of these classes. Many specific junctions having five or more
ports have also been discussed [1], [7]-[14] but general considera-
tions of junctions having five or more ports have been virtually
ignored. Such general considerations are often of great value in de-
sign procedures as has proven to be the case for 3- and 4-port junc-
tions.

This short paper considers some restrictions imposed on general
5-port junctions by losslessness and reciprocity, and later some re-
strictions imposed by physical symmetry. It will be shown as follows
that lossless reciprocal 5-port junctions cannot be completely
matched if they have two or more ports decoupled from one another
or if they have certain common forms of physical symmetry. Al-
though these properties diminish the practical importance of 5- -port
]unctlons, the results themselves are none the less important since
they specify quite general characteristics which cannot be physically
achieved with the kind of structure being considered. It is also
proven that for any lossless reciprocal 5-port junction which is com-
pletely matched, the off-diagonal elements of the scattering matrix
all have a magnitude of one half, and relations between the phases
of these elements are presented.

II. GENERAL 5-PorT JUNCTIONS?

Consider a lossless reciprocal 5-port waveguide junction® (or
network) which initially will also be assumed completely matched.
Denote this junction by J and its scattering matrix by [S]. For a
reciprocal junction, [S] is symmetric so that S;;=.JS,;. Also, since
the Junctxon has been assumed to be completely matched, S;;=0,

i=1,. .., 5. Employing these restrictions, the scattering matrix
for Jis ngen by
S12 S13 Sl4 S15
Sz 0 Sa Sa Sas
[S]=] S5 Ss 0 Sas Sss |- mn

Sie Sz Sa 0 Sss
Sis Sz Sz S O

Furthermore, since J is lossless, [S] is unitary and the columns of
[S] form an orthonormal set under a Hermitian inner product, that
is, ¢;1 ¢;=8,; where ¢; is the ith column of [S] written in column
vector form, and ¢; = (c;*)T, where * denotes complex conjugation
and T indicates the transpose operation. Applying this restriction to
the columns of [S] results in the following equations:

cifer=1= |512P‘+ |513|2+ |514[2+ |515!2 (2)
cter=1= [S12|2+ ]S%IZ‘F l524l2+ |525\2 3)
ey =1 = |S13[2+ |S23!2+ |S34|2+ !535 2 €Y
cifes =1 = |Sl4|2+ |S2412+ [534|2+ '5452 (5
cifes =1 = !Sls|2+‘52524“!535[2-}‘]5452 (6)
cifes = 0 = 515%523 + 5144500 + 515%5ss )
cifes = 0 = 519" + S14*53¢ + 515*Sss (8)
cifcs = 0 = S15*524 + S15%554 + S15¥Ses %)
cifes = 0 = S12*525 + S15* 535 + S1*Sss (10)
cofes = 0 = 5155515 + S24%S34 -+ S25™S3s (11)
cotes = 0 = S12%S14 + S25* 534 + So* S5 (12)
cofes = 0 = $19*%S1s + S25*5s5 4+ S2e* S5 (13)
cstes = 0 = S1s*S1a + S2* 824 + S35*Sss (14)
cstes = 0 = S13%515 + S23*Saes + S34%S4s (15)
cetes = 0 = S14%515 + S28S2s + 345535, (16)

These equations will be used in the proof of Theorems 1 and 2 which
follow.

L2 The term “general” is used here to indicate that the 5-port junctions considered
in this section need not have any particular physical symmetry. 3
3 All junctions (or networks) will also be considered linear and passive.
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Theorem 1

For a lossless reciprocal 5-port waveguide junction (or network),
being completely matched and having two or more ports decoupled
from one another are mutually exclusive conditions.

Proof: Since at least one lossless reciprocal 5-port junction can be
completely matched (Dicke's star junction?), a proof by contradic-
tion may be used by assuming that a lossless reciprocal 5-port junc-
tion J is completely matched and has at least two decoupled ports.
Assuming both of these conditions simultaneously leads to a mathe-
matical contradiction as is shown as follows.

Since it has been hypothesized that at least two ports of J are
decoupled, let the ports be numbered so that at least ports 4 and 5§
are decoupled. Then Sy =0.

Next it will be shown that Si3 cannot equal zero if S =0 for the
restrictions already placed on [S]. Assume that Ses=0. Then, (12)-
(15) and S =0 imply that: 1) S;2=S13=0, or 2) S;4=S;5=0, or 3)
at least three of the four scattering coefficients Sig, Sis, S14, and Sy; are
Zero.

1) Setting S12=Sls=523=545=0, in (2)"‘(6) and addmg (5) and
(6) yiélds

2= (| Sul+ [SisD 4+ (| S22+ [ Sas]D + (| Saal? + [ Sss[®). (17

Now substituting (2)—(4) into (17) produces the obvious contradic-
tion 2 =3. Thus, S;2 and S13 cannot both be zero if Sy =0.

2) Duplicating the procedure in 1) for S;4=515=3S=S;5=0 re-
sults in the same contradiction; hence, Si4 and S;5 cannot both be
zero if Sp=0.

3) If at least three of the four coefficients Sys, S13, S14, and Si5 are
zero, then at least S;2=S13=0 or S14=S;5=0. But neither of these
conditions can occur according to the developments under 1) and
2) if both S5 =0 and Sa3=0.

Therefore, Sas7=0.

Noting that S has been assumed to be zero and that Sy30,
(12)-(15) may be solved for Sss, Sss, Sa¢, and Sas, respectively. The
expressions for Sz and Sz« may be substituted into (9) giving

0 = S12%515*Su (18)

and the expressions for Sz and S may be substituted into (10)
yielding

0 = 512*515*S1s. (19
Equations (18) and (19) have only the following possible solutions:
1) S12=0, 2) S13=0, 3) S;4=Si5=0, or 4) any combination of 1), 2),
and 3).

1) If S;2=0, then since S4i5=0, (12) and (13) indicate that Sss
=S35=0 also. Making these substitutions in (2)-(6) and adding
(2) and (3) yields

2= (| Sul?+ | Ses® + (| Sul? + [ S2l®) + (| S5]2 + | S35]2). 20)

Substituting (4)-(6) into (20) yields the result 2 =3, contradicting
the hypothesis that Si2=0. Therefore, Si2540.

2) Duplication of the procedure in 1) for Si3=0 contradicts the
hypothesis that S;;=0 is an acceptable solution to (18) and (19).
Hence, S13#%0.

3) If S14=3815=0, then Sy =3I 5=S3=S3=0 also, from (12)—
(15). When these six scattering coefficients vanish, (5) reduces to the
contradiction, 1 =0. Thus, S|4 and S5 cannot both be zero.

4) Any combination of the conditions of 1), 2), and 3) may simi-
larly be shown to lead to contradictory results.

Therefore, S 70 for a completely matched J.

In this proof the two ports assumed to be decoupled were arbi-
trarily numbered 4 and 5. However, port numbering can in no way
influence the actual physical characteristics of a junction. Thus the
same contradictory results would have been obtained if any pair of
numbers had been assigned to the ports assumed to be decoupled.
Also, in the above development all off-diagonal elements other than
Si5 were taken to be completely arbitrary unless it was proven that
they must be nonzero. Thus the above development shows that it is
not possible to have any combination of decoupled ports in a matched

11t will be shown later that other possible symmetries also allow complete
matching.
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lossless reciprocal S-port junction, and the proof of Theorem 1 is
complete.

Theorem 2

All off-diagonal scattering coefficients of a lossless reciprocal -
port junction (network) have a magnitude of one half if and only if
the junction is completely matched.

Proof: Let J denote a lossless reciprocal 5-port network. The
sufficient or “if” condition is proven first.

Since J is totally matched, then the scattering matrix is given by
(1), and (2)-(16) apply. Also, by Theorem 1, S,; #0, 174. Substitut-
ing the expression for S5, obtained from (9) into (8) yields

=S85 m - S125514550 + S1t515*S s

Sss 21
: S18*%515* @)
Substituting this expression for S35 into (10) yields
S45 - Sl2*(Sl3*523 - 514*S24 - 515*525) . (22)
2514*815*
Substituting this expression for Sus back into (21) gives
Sup = S19*(—=S15%S2s + S14* 524 — S15*S25) . (23)

2815%815*
Substituting the expression for S obtained from (22) into (9) gives
S12*(—=S15* S0 — S1*S2s + S15%S2s)

S = 24
34 2513* 14* ( )
Using (7), (22)—(24) become, respectively
S12%515* 125514 S12%515*
Sip= 22 G S = DEOM g g, = DR o s
! SiSis T P® SitSir Si*Si (25)

Replacing (8)-(10) with (11)-(13), respectively, in the above
procedure, and using the complex conjugate of (7), then the follow-
ing relationships, analogous to (25), result:

S12%525* S12%524*
S245S5* S2g*Sas*

In terms of scattering coefficient magnitudes, (25) and (26) reduce to
the following:

S12%525*

S = 13, S = 1, Sa = @3“2?515- (26)

|Sim| = [Sm], m=34,5. @7

But (27) must be valid independent of the port numbering of J,
therefore, it must apply to the scattering coefficients relating any
two ports of J to the remaining ports, i.e.

| Sim | = [Ssz, m#E kA, kR lLm=1 ... 5 (28)

Substituting (28) into (2)-(6) and remembering that |S|
= {Sﬂ]: i:].=11 c vy 5, then

|sul =% i#j, di=1---,5 (29)
and the sufficient or “if” condition is proved.
Now, consider the necessary or “only if” condition. If all off-

diagonal scattering coefficients of J have a magnitude of one half,

ie., | S, =%474,4,j=1,-.,5, thensince [S]is unitary
ater=1=3 |Sult=1+ |Sul? (30)
k=1
and
0 =5y, I=1,.--,5. (31)

Equation (31) is synonymous to the specification that J is completely
matched; hence, the necessary condition is proven.

Theorem 2 specifies all scattering coefficient magnitudes for a loss-
less reciprocal completely matched 5-port junction. If (7)-(16), or
equivalently (14)-(16), (25), and (26) are solved in terms of the
scattering coefficient phases, five equations in ten unknowns result.
This exhibits the extent to which these phases may be specified for a
matched reciprocal lossless 5-port junction. The results are listed in
Table I for independently chosen ¢z, ¢13, P14, P15, and ¢es, where
Su=1[S:x| exp (jpui). Of course, if the junction under consideration
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TABLE 1

SCATTERING COEFFICIENT PHASE RELATIONSHIPS FOR A LLOSSLESS
ReciprocAL COMPLETELY MATCHED 5-PORT JUNCTION

bpy = byt byt bpy + 2nlny 2 1/3)
by5 = =byg F byt dy5 + 2u(n, 7 1/3)
bay = “yp F dyy t by + 20(ng 7 1/3)
b5 = =b1, F dyg F by F 2n(n, £ 1/3)
b5 = “b1p T d13 F by byt by + 2mng

Note: Phase relattonships are for independently chosen ¢12, ¢135 P14, ¢15, and poa.
Here Sip =% exp (j¢ur), & »k and ng, k=1,..., 5, is an integer. The upper signs
give one acceptable set of phase relations and the lower signs give another.

possesses physical symmetry, more information than is given in the
table may be attainable as shown by Dicke for the case of the 5-port
star junction [1].

III. SYMMETRICAL 5-PorRT WAVEGUIDE JUNCTIONS

In this section 5-port waveguide junctions possessing some form
of physical symmetry are considered. An object possesses physical
symmetry if one or more operations such as reflection in a plane, or
rotation (other than by 360°) about an axis superimpose the object
back into itself [1]. These operations which leave the object un-
changed are called covering or symmetry operations. The set of all
such operations for a physical object, together with the identity
operation, form a group in the mathematical sense [15]. If a covering
operation of a waveguide junction is performed just on the fields
within the junction, keeping the same junction position and port
numbering, the new field pattern will also satisfy the boundary con-
ditions within the junction, but the fields at the various ports will in
general be redistributed. The matrix which describes this redistribu-
tion of the port electric fields by a covering operation is termed the
port electric-field transformation for that operation. The port electric-
field transformations for any given junction also form a group which
is isomorphic with the group of covering operations for that junction.
These port-field transformations must commute with the scattering

matrix so that [1]
[x][s]= [s][x]

where [X] denotes the port-field transformation associated with a
covering operation X.

If G={[X1], - -+, [X:]} is a group of port-field transformations
of a junction J and if every covering operation of J has a correspond-
ing port-field transformation which is an element of G, then G is
said to completely represent the symmetry exhibited by J. Further-
more, if for all [X] in G, the restrictions imposed by (32) on the
scattering coefficients do not preclude the possibility that S,,=0,
=1, - + + y m, then it is said that the symmetry of J does not preclude
J from being completely matched. Similarly, if for all [X]in G, (32)
does require that Si;>£0 for one or more values of 4, then it is said
that the junction’s symmetry precludes its being completely matched.
Note that if symmetry does not preclude complete matching, there
is still no guarantee that J can necessarily be matched. For example,
copper plates located at the terminal planes of all the ports of J will
preserve the symmetry of J and yet leave the junction so that it
cannot be matched.

(32)

Theorem 3

Let J; and J; be two lossless reciprocal #-port junctions, and let
G and H be groups of port-field transformations, completely repre-
senting the symmetry of J; and Js, respectively. If symmetry does
not preclude totally matching Jy and if H is a subgroup of G, then
symmetry does not preclude totally matching Js.

Proof: Since H is a subgroup of G, then all port-field transforma-
tions of H are contained in G. Thus the restrictions placed on the
scattering coefficients of J» by H and (32) are satisfied if the restric-
tions placed on the scattering coefficients of J; by G and (32) are
satisfied. But, symmetry does not preclude totally matching Ji;
thus the scattering coefficient restrictions may be satisfied for a
completely matched J; and also for a totally matched J,. Therefore,
symmetry does not preclude completely matching J. as was to be
shown.
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TABLE II

MATCHING PROPERTIES OF LOSSLESS RECIPROCAL 5-PORT JUNCTIONS
COMPOSED OF RECTANGULAR, CIRCULAR, AND/OR COAXIAL WAVE-
GUIDES AND PossEssING VAaRIOUS FORMS OF PHYSICAL SYMMETRY

Junction Symmetry Example Precludes Complete Matching
Fifth-order rotational® Fige 1 No
Fourth-order rotational¥ Fig. 2 Yes
Third~order rotational¥ Fige 3 Yes
Second~order rotational

Type 2 Fig. & Yo

Type 1 Fig. 5 Yes

Type Ok% — -
Firsteorder rotationali Ko
Reflection

Type 2 Fiz, & Yo

Type 1 Fig. 6 Yes

Type O Fige 7 Noif

% The results ave valid for a junction composed of arbitrary waveguides.
&% This symmetry is unrealizable in the five-port case.

+ First-order rotational symmetxy, generated by the identity operatien, never
precludes matching any junction.

¥+ This result is valid if and only if the representative port-field trans=
formation is = [Iz].

The converse of Theorem 3 does not hold in general. If G represents
symmetry that precludes matching J; and if H= {[I.]}® where I
denotes the identity operation and [I.] denotes the nX# identity
matrix which is the port-field transformation for I, then H is a sub-
group of G. But (32) is always satisfied for [X]=[I.]. Therefore,
symmetry does not preclude matching J». This situation is a counter-
example of the converse of Theorem 3, and the converse is invalid.
Other less trivial counterexamples also exist.

Theorem 3 is quite useful in conjunction with a symmetry class
analysis of lossless reciprocal #-port junctions, i.e., a determination
of the types of physical symmetry that preclude complete matching
and those which do not. This evaluation is most easily performed by'
considering cyclic groups of symmetry operations and their asso-
ciated port-field transformations. Since these groups are generated by
one group element, then all scattering coefficient restrictions im-
posed by a cyclic group may be ascertained by commuting only this
group element with the scattering matrix in accordance with (32).
If it can be shown that such a cyclic group precludes complete
matching, e.g., the scattering coefficient restrictions imposed by
(32) are not consistent with the relationships of Table I for the 5-
port case, then any group containing this cyclic group will also pre-
clude matching by Theorem 3. Since every mathematical group may
be subdivided into cyclic subgroups, then any group of port-field
transformations which precludes total matching may be determined
from the cyclic groups which preclude complete matching, providing
all possible cyclic groups are considered.

Such a symmetry class analysis of lossless reciprocal 5-port wave-
guide junctions has been performed [16]. While the analysis itself
is too lengthy to include here, the results are given in Theorems 4 and
S5, and Table II. For purposes of conveniently classifying symmetry
operations, the following definitions are introduced.

Definition 1

If a waveguide junction J has a rotational symmetry operation
about an axis 4 by 2xm/n rad, where m and # are relatively prime
integers, then there exist » —1 distinct additional rotations about 4
[15], and J is said to have nth-order rotational symmetry. The axis
A is said to be an n-fold axis.

Note that a S-port junction can have at most five distinct rota-
tions about one axis, hence it can have rotational symmetry of at
most the fifth order about one axis.

Definition 2

If an n-port waveguide junction J has a reflection operation
about one plane P or a second-order rotation operation about one

5 .Since H completely represents the symmetry of J., then this is equivalent to
specifying that J» has no symmetry. Consequently, symmetry does not preclude
matching Ja.
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(1)
A
(2) (5)
(3) 4
(4) A
Fig. 1. Typical S-port junction possessing fifth-order
rotational symmetry about an axis 4.
(1
A \
@ (@)
(s)
A
3)
Fig. 2. Typical 5-port junction possessing fourth-order
rotational symmetry about an axis A.
(1)
A
Q)]
A
Fig. 3. Typical 5-port junction possessing third-order

rotational symmetry about an axis A.

axis 4 and if the corresponding port-field transformation spatially
affects the fields® in 2k of the junctions ports, 2k<#, then J is said to
have reflection symmetry or second-order rotational symmetry, re-
spectively, of type k.

Note that a S-port junction can have at most four ports whose
fields are spatially affected by a reflection or second-order rotation.
Thus it can have reflection or second-order rotational symmetry of at
most type 2. Figs. 1-7 illustrate the notation and terminology in-
troduced in these definitions.

With this terminoclogy in mind, the following theorems on 5-port
junctions are introduced.

¢ If only the sense_of the fields is affected by a port-field transformation, then
the fields are not considered to be spatially affected.
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Fig. 4. Typical S-port junctions possessing type 2 second-order rotational sym-
metry about an axis A and type 2 reflection symmetry about each of the planes
Pg and Pp.

A

{3 /’“a
<

(2)

(1)

(5)

A

Fig. 5. Typical 5-port junction possessing type 1
second-order rotational symmetry ahout an axis A.

Theorem 4

If a lossless reciprocal 5-port junction J has a group of port-field
transformations G, completely representing the symmetry of J, and
if G has a subgroup H which represents either: 1) a third-order rota-
tional class of symmetry operations, or 2) a fourth-order rotational
class of symmetry operations, then G precludes completely match-
ing J.

Theorem 5

If a lossless reciprocal S-port junction J composed of rectangular,
circular, and/or coaxial waveguides has a group of port-field trans-
formations G, completely representing the symmetry of J, and if G
has a subgroup H which represents either: 1) a type 1 second-order
rotational class of symmetry operations, or 2) a type 1 reflection
class of symmetry operations, then G precludes completely match-
ing J.

The matching properties of all cyclic symmetry groups that a 5-
port can have are summarized in Table IT. Finally, the theorem fol-
lowing gives further information concerning junctions having a re-
flection symmetry plane which cuts two or more ports such that the
electric field of one is odd and the electric field of another is even,
relative to that plane.
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{4 ‘}

u/—-P

1%

(2

9%

~

4

(3

== ==

Fig. 6. Typical 5-port junctions possessing type 1

reflection symmetry about a plane P.

(31

"(4)

(5}

Fig. 7. Typical 5-port junction possessing type 0

reflection symmetry about a plane P,

Theorem 6

If a lossless reciprocal 5-port waveguide junction has a plane of
reflection symmetry P which cuts two or more electrical ports so that
the electric field of one is even and that of another is odd with respect
to P, then the junction may not be matched (and still retain the re-
flection symmetry).

Proof: By the “port decoupling theorem” [$], if the fields of two
ports of a reciprocal junction have opposite symmetry {one even and
one odd) with respect to a plane of reflection symmetry of the
junction, they are decoupled. Then, by Theorem 1, since the junction
being considered has five electrical ports, it cannot be matched and
the theorem is proven.
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Faster Impedance Estimation for Coupled Microstrips
with an Overrelaxation Method

R. DAUMAS, D. POMPEI, E. RIVIER, axp A. ROS

Abstract—Using the Frankel-Young method [1], [2], fast es-
timation of the potential distribution for a microstrip structure is ob-
tained when an accelerating factor « is introduced in the finite-
differences (relaxation) method. It is possible to calculate such a
factor by an iterative technique, but the time of computation needed
to find w annihilates the theoretical gain.

In this short paper, the authors present a method which gives an
analytical expression for . The realistic case examined here, as an
illustration, is that of the suspended microstrip couplers for which
odd and even impedances are the interesting parameters.

Given an analytical expression for w, the overrelaxation method
appears as a very powerful and attractive method for finding the
solution of any type of microstrip structure.

I. INTRODUCTION

The integrated technology using microstrips provides new pos-
sibilities for microwave designs. A very important one is the realiza-
tion of compact low-cost dispersive lines used as group-velocity cor-
rectors for digital telecommunications. The basic component of such
a system can be reduced to a microstrip coupler.

In the last few years, several authors [3]-[7] have treated some
particular problems using different methods, but they are generally
complicated and applicable to particular geometrical cases.

A solution using finite differences has been proposed by Green [8]
and others. An application has been given by Brenner [9] to the
simple case of the suspended microstrip line and by Gupta [10] to
the idealized problem considered by Cohn [3], i.e., the suspended
coupler in a homogeneous dielectric such as air. That problem is
purely theoretical, with no substrate sustaining the strips.

However, as emphasized by Smith [6], the methods using finite
differences appear as inadequate because the very fine mesh required
for the accuracy leads to difficulties in the convergence. Clearly, it
means that the computing time becomes prohibitive and the com-
puter memory becomes saturated.

Nevertheless, the use of the finite-differences method should
become a very fruitful approach if an accelerating factor taking into
account the geometry of the problem could be injected in the pro-
gram.

In this short paper, the problem of the research of such a factor
is solved and applied to the case of the suspended coupler with a
dielectric substrate of constant e, sustaining the strips.

In the finite-differences method, we define in a geometrical domain
the potentials at the nodes of a net (Fig. 1). The relations between
all the potentials can be written

(4)(®) = (B). (1)
System (1) can be solved by an iterative process [1], [2], [11]
writing
W, = M¥, 4 C. (2)
The Frankel-Young method introduces the accelerating factor w.
An optimal value of & —wep gives the fastest convergence. We have
2

TFvi—nn ®)

Wopt =
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Fig, 1. Geometrical parameters definition.
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where u; are the eigenvalues and aw: are the diagonal elements of 4.

II. APPLICATIONS OF THE FRANKEL-YOUNG METHOD
TO A SUSPENDED MICROSTRIP COUPLER

A. Resolution of the Problem for an “Empty Box” [11]

Using the finite-differences method and for the second-order
approximation, the Laplace’s equation is reduced to

W, D) =i[@U, T-0)+¥ (I, T+ 1)+ -1, N)+¥(I+1, 0] (5)

The variable changing (I, J) =X,, withi=(N—-2)(T —-2)+J —1,
allows us to have the unknowns indexed by a continuous sequence
(Fig. 1).

The 7th equation of the system (1) will be written

4X,— X1 — X —Xoyv_o— X N42=0, 1<i<(M-2)(N—-2).

The matrix 41 (Fig. 2) can always be split into two symmetrical tri-
diagonals—matrices 4; and A., the main diagonal elements being
aix/2 such that 4 =4+ A4..

It can be shown that 4; and A: have the same eigenvectors. Let
V be one of these eigenvectors and g; and us be the two correspond-
ing eigenvalues for 4; and A.; thus we have

AV = (1 + pa)V.
Consequently, the eigenvalue of 4 corresponding to V is
= p1 -+ pa.

The matrix A, has (M —2) tridiagonal blocks of order (N¥N—2),
where all are identical; let 4," be such a block. The eigenvalues y; of
Ay are (M —2) times the eigenvalues of A,":

27 -1
-1 2 -1

A1’=

-1 2 -1
-1 2iN-2

The eigenvalues of the matrix 4," are

. 1<E<N -2

uir’ = 2 — 2 cos —@
N

In the matrix 4., by permutations of rows and columns, it is
possible to reduce 4 to a band matrix 4 like 4;.

In order to avoid the tedious calculations by permutations, it is
possible to find a faster process to transform As into 4». One chooses
another variable changing ¢(I, J)=X.* with =M —-2)(J-2)
+I—1.

The system (1) is then written (4)*(X)*=(B)*. The physical
problem is unchanged, so that the solution is the same. The solution
vector (X)* is simply written on a new set of coordinate vectors.
A and A represent the same linear application; consequently, they
are similar and therefore have the same eigenvalues.

This time, 4* can be split into two matrices 4,* and 4.*, where
A;* originates from the vertical lines and 4:* from the horizontal
lines and 4% =4,*44,*.

A1* has (N —2) diagonal blocks 4,'* similar to 4., but of order
M-—2.



